Registro de citas para el Incidente 61

Description: In the “The Nature Conservancy Fisheries Monitoring” competition on the data science competition website Kaggle, a number of competitors overfit their image classifier models to a poorly representative validation data set.

Herramientas

Nuevo InformeNuevo InformeNueva RespuestaNueva RespuestaDescubrirDescubrirView HistoryView History
Presunto: un sistema de IA desarrollado e implementado por Individual Kaggle Competitors, perjudicó a Individual Kaggle Competitors.

Estadísticas de incidentes

ID
61
Cantidad de informes
1
Fecha del Incidente
2017-05-01
Editores
Sean McGregor

Clasificaciones de la Taxonomía CSETv0

Detalles de la Taxonomía

Full Description

On the data science competition website Kaggle, a number of competitors in the “The Nature Conservancy Fisheries Monitoring” competition overfit their image classifier models to a poorly representative validation data set. This resulted in intermediate competition rankings that were misleading and discouraged other data scientists from competing. Outside of the competition environment it would not have been clear that this error had taken place.

Short Description

In the “The Nature Conservancy Fisheries Monitoring” competition on the data science competition website Kaggle, a number of competitors overfit their image classifier models to a poorly representative validation data set.

Severity

Negligible

Harm Distribution Basis

Religion

AI System Description

Image classifer models designed by individual competitors on Kaggle.

System Developer

Individual Kaggle Competitors

Sector of Deployment

Public administration and defence

Relevant AI functions

Perception

AI Techniques

supervised learning, machine learning, DNN, VGG, open-source

AI Applications

Feature detection, Image classification, Decision support

Location

Global

Named Entities

Kaggle, The Nature Conservancy

Technology Purveyor

Kaggle Competitors

Beginning Date

2016-11-14T08:00:00.000Z

Ending Date

2017-04-12T07:00:00.000Z

Near Miss

Near miss

Intent

Accident

Lives Lost

No

Data Inputs

Images captured on fishing boats

Informes del Incidente

Lo que aprendí de la competencia de pesca de Kaggle
medium.com · 2017

Lo que aprendí de la competencia de pesca de Kaggle

Gidi Shperber Bloqueado Desbloquear Seguir Siguiendo 1 de mayo de 2017

TLDR:

Mi socio de Kaggle y yo participamos recientemente en la competencia de Kaggle "The Nature Conservancy Fisherie…

Variantes

Una "Variante" es un incidente que comparte los mismos factores causales, produce daños similares e involucra los mismos sistemas inteligentes que un incidente de IA conocido. En lugar de indexar las variantes como incidentes completamente separados, enumeramos las variaciones de los incidentes bajo el primer incidente similar enviado a la base de datos. A diferencia de otros tipos de envío a la base de datos de incidentes, no se requiere que las variantes tengan informes como evidencia externa a la base de datos de incidentes. Obtenga más información del trabajo de investigación.

Incidentes Similares

Por similitud de texto

Did our AI mess up? Flag the unrelated incidents