Registro de citas para el Incidente 84

Description: Avaaz, an international advocacy group, released a review of Facebook's misinformation identifying software showing that the labeling process failed to label 42% of false information posts, most surrounding COVID-19 and the 2020 USA Presidential Election.

Herramientas

Nuevo InformeNuevo InformeNueva RespuestaNueva RespuestaDescubrirDescubrirView HistoryView History

Estadísticas de incidentes

ID
84
Cantidad de informes
1
Fecha del Incidente
2020-10-09
Editores
Sean McGregor, Khoa Lam

Clasificaciones de la Taxonomía CSETv1

Detalles de la Taxonomía

Harm Distribution Basis

none

Sector of Deployment

information and communication

Clasificaciones de la Taxonomía CSETv0

Detalles de la Taxonomía

Full Description

Avaaz, an international advocacy group, released a review of Facebook's misinformation identifying software showing that the labeling process failed to label 42% of false information posts, most surrounding COVID-19 and the 2020 USA Presidential Election. Avaaz found that by adjusting the cropping or background of a post containing misinformation, the Facebook algorithm would fail to recognize it as misinformation, allowing it to be posted and shared without a cautionary label.

Short Description

Avaaz, an international advocacy group, released a review of Facebook's misinformation identifying software showing that the labeling process failed to label 42% of false information posts, most surrounding COVID-19 and the 2020 USA Presidential Election.

Severity

Unclear/unknown

Harm Type

Harm to social or political systems

AI System Description

Facebook's algorithm and process used to place cautionary labels on posts that are decided to contain misinformation

System Developer

Facebook

Sector of Deployment

Information and communication

Relevant AI functions

Perception, Cognition

AI Techniques

Language recognition, content filtering, image recognition

AI Applications

misinformation labeling, image recognition, image labeling

Location

Global

Named Entities

Facebook, Avaaz, Reuters, AP, PolitiFact

Technology Purveyor

Facebook

Beginning Date

2020-10-09T07:00:00.000Z

Ending Date

2020-10-09T07:00:00.000Z

Near Miss

Unclear/unknown

Intent

Unclear

Lives Lost

No

Infrastructure Sectors

Communications

Data Inputs

User posts

Pequeños cambios permiten afirmaciones falsas sobre COVID-19, votaciones evaden verificaciones de datos de Facebook
npr.org · 2020

Algo tan simple como cambiar la fuente de un mensaje o recortar una imagen puede ser todo lo que se necesita para eludir las defensas de Facebook contra engaños y mentiras.

Un nuevo análisis del grupo de defensa internacional Avaaz arroja l…

Variantes

Una "Variante" es un incidente que comparte los mismos factores causales, produce daños similares e involucra los mismos sistemas inteligentes que un incidente de IA conocido. En lugar de indexar las variantes como incidentes completamente separados, enumeramos las variaciones de los incidentes bajo el primer incidente similar enviado a la base de datos. A diferencia de otros tipos de envío a la base de datos de incidentes, no se requiere que las variantes tengan informes como evidencia externa a la base de datos de incidentes. Obtenga más información del trabajo de investigación.

Incidentes Similares

Por similitud de texto

Did our AI mess up? Flag the unrelated incidents